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Elastic Wave Velocity Effect on Temperature Diffuse Scattering in Cubic P o w d e r s  
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A simplifying assumption made in previous calculations of temperature diffuse scattering (TDS) for 
cubic powders is that  all elastic waves have the same average velocity. In practice, the longitudinal 
velocity is found to be about twice the magnitude of the transverse velocity. The effect of such 
velocity differences is considered for the one- and two-phonon contribution to TDS. It  is found that  
the major effect in both the one- and two-phonon contribution is to sharpen the peaking of TDS 
in the vicinity of the Bragg peaks. For the most part, there is a decrease of the magnitude of TDS 
in the valleys between Bragg peaks and an increase in the magnitude of TDS at the Bragg peaks 
over the results of the previous calculations. Thus, the observed magnitude of TDS between Bragg 
peaks is decreased, in accord with comparisons of earlier theory with experiment. The contribution 
of TDS to the apparent measured integrated intensity is found to be larger than earlier estimates 
and thus increases the importance of correcting for the TDS contribution to measured Bragg 
intensities. 

Introduction 

Warren  (1953) and the author  (1958) have developed 
expressions for the tempera ture  diffuse scattering 
(TDS) in cubic powders. A simplifying assumption 
made  in these calculations is tha t  all the elastic waves 
have the same average velocity. In  practice, the 
longitudinal  velocity is found to be about  twice the 
magni tude  of the t ransverse velocity. We here extend 
the previous TDS calculations for cubic powders 
(Warren, 1953; Paskin,  1958; Chipman & Paskin,  1959) 
so as to include the explicit  longitudinal  and transverse 
velocity dependence. Theoretical relat ionships are 
derived for the in tens i ty  of TDS as a funct ion of the 
wave velocities and  parameters  tha t  depend on the 
position in reciprocal space. Calculations have been 
made  for both the one- and two-phonon contributions 
(Paskin, 1958; Chipman & Paskin) and have been 
numer ica l ly  evaluated for a wide region of reciprocal 
space. The one-phonon calculation is an extension of 
the  previous work of the author  (1958) and the two- 
phonon calculation combines in approximate  manner  
the author 's  previous two-phonon calculation (1958) 
with some related work by Walker  (1956). 

One-phonon TDS calculation (theory) 

From previous work (Paskin, 1958; Chipman & 
Paskin) i t  can be shown ITD1, the in tens i ty  of the 
one-phonon contr ibut ion to TDS, m a y  be wri t ten as 

ITm = (Jg~max.(V2)g-2/3) .~,V~ 9 cos~ a ~ ,  (1) 
~J 

where 5 r is a parameter  (subsequently defined in 
detail) which depends on the Debye-Wal le r  factor and 
the atomic scattering factor, 

( V ~) = 3 [ ( VF ~ + 2 Vt2)average] -1 

is a Debye-like average velocity in terms of Vz, the  
longi tudinal  velocity and Vt, the  t ransverse velocity, 
gmax. is the radius of a sphere equal to each Bri l louin 
zone, g is the magni tude  of the reciprocal wavelength  
of the elastic wave, V¢~ is the velocity of the elastic 
wave ~j and a¢j is the angle between the X- ray  
diffraction vector and the vibra t ion direction of the  
w a v e .  

In  the previous and present calculations, i t  is as- 
sumed tha t  the crystal  is elastically isotropic. Conse- 
quently,  the waves of a given wave vector can be 
resolved into a longitudinal  and two t ransverse com- 
ponents (with equal wave velocities). In  previous work 
(Warren, 1953; Paskin,  1958) it  was fur ther  assumed 
tha t  the longi tudinal  velocity Vz is equal to the trans- 
verse velocity V~ and thus 

(V 2 ) ~ V ~  2cos 2 a ~ i =  (V 2)Vg 2.~,cos ~a~l = 1. (2) 
~J ~J 

In  actual i ty ,  for common materials  Vz ~ 2 V t  and  
thus (2) is not  valid. I t  is not immedia te ly  apparent  
whether  the approximat ion  in (2) under- or over- 
est imates the term. Subsequently,  we find tha t  the 
term when appropriately averaged can be both greater 
or less than  un i ty  depending on both the distance 
from a Bragg peak and the relat ive separat ion of the 
Bragg peaks in the vicinity.  This is readi ly seen in the 
detailed results of re ta ining the Vz and Vt terms in 
the equat ion for the intensi ty.  The contr ibut ion to the 
powder pat tern  in tens i ty  arising from all the contribut-  
ing Brillouin zones from a given (hkl) peak at  a f ixed 
position in reciprocal space is 

where a = edge of a cubic cell, ~ = wave length 
of X-rays,  X = 2a sin 0/2, Xhkz = 2 a s i n  0hgz/2 = 
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(h~+k~+l~)½, ~ = ag, X~,i.. = agmin. = [X-Xhg~[ and 
Xm = agm~.. Multiplying by the appropriate multi- 
plicity factor and adding values from all peaks that  
can contribute at fixed value of X, the total TDS 
powder intensity, <ITm(V~, V~, X)> is 

IxXL ITDI~ d ~  (ITm(V, V~, X)> = 2: [j~#(2XXa~)] 

~ " (4) 

In order to perform the integration in (4), we first 
put the direction cosine terms of ITm in terms of 
X, Xa~ and ~.  Thus, the longitudinal term is written 
as 

v~ v~ ~ ' ]  v, (5) 

where 0¢ (shown graphically in Fig. 1) is the angle 
(in the X-Xa~z  plane) between ~ and X. The two 
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Fig. 1. Vector diagram of the relationship between the X-ray 
photon wave-vector X, the elastic wave phonon wave- 
vector ~, and Xhkl, the vector to the (hkl) reciprocal lattice 
point. Vl, Vtl and Vtg. indicate the orientations of the 
longitudinal and two possible transverse waves for the given 
phonon wave-vector ~. 

transverse terms have equal velocities and are at right 
angles to each other as shown in Fig. 1. In replacing 
the direction cosine terms by functions of X, Xhk~ and 

we make use of the fact that  the desired factor is 
the spacial average of these terms. In the case of the 
longitudinal term, (5) is directly the spacial average. 
In the case of the transverse term, the appropriate 
spacial average results in the following 

COS20~t2) cOS2 ~%tl sin ~ 0¢ 
\ ~,~ + ~ , ~ -  v~ 

: I , _  

Making use of (1), (4), (5) and (6) we arrive at the 
following expression" 

<I~:DI(V,, V .  X)> = J(C~+~C;) , (7) 
where 
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C1 = 1 ~  "~ In (8) 
hkl X~h~ ( X - X ~ z ) 2 J  ' 

a = <V2>(VK 2-  Vi -2) > 0 ,  (9) 

c; = ~ . z  
3J 

(X-Xh~)~J - : ~  + 4X~X ~ 4X2] ' 
(10) 

and 
~¢ =/Vf2(2M2)) exp ( - 2 M ) .  (11) 

Here N = the number of atoms, f =  the atomic 
scattering factor, 2M = the Debye-Waller factor and 
2Ma the TDS modified Debye-Waller (Paskin, 1958). 
Although a detailed discussion of 2MD is beyond the 
scope of this paper (see Chipman & Paskin for details), 
for most materials it would be expected that  2MD 
is approximately equal to 2M. The form of (7) was 
chosen so as to consist of two terms: a term propor- 
tional to C1 which in turn is identically the factor 
obtained in earlier calculations with Vz = Vt and an 

t additional or corrective term proportional to 6C1. 
The explicit velocity dependence of the corrective 
term is contained in (~, and the reciprocal space 
dependence of the corrective factor is contained in C~. 
(~, of course, reduces to zero when Vz = Vt but in 
addition it has the convenient property of being unity 
when V~ = 2Vt, a good approximation for common 
materials. Therefore, C~ is to good approximation 
directly the corrective factor. 

One-phonon TDS calculation (discussion) 
In Fig. 2, the corrective term C 1 is given as a function 
of X. The important points to note are: the velocity 
corrective term is generally negative in the region 
between Bragg peaks and positive in the immediate 
vicinity of a Bragg peak. In order to obtain a quanti. 
tative comparison of the additional velocity corrective 
term with the previous results, in Fig. 3 we have 
plotted C1/C1, the ratio of the velocity corrective term 
(Vz = 2Vt) to the previous results (V~ = Vt). I t  can 
be seen that  the observable portion of TDS (i.e. the 
region between Bragg peaks) has been lowered by the 
velocity corrective term over that  of previous calcula- 
tions. This is qualitatively in agreement with the ex- 
perimental observations of Chipman & Paskin. In 
order to obtain agreement with previous theory and 
experiment they found that  they must use a value of 
2MD that  is lower than 2M to match TDS in the 
region between Bragg peaks. This follows because the 
explicit inclusion of the velocity terms in the para- 
meter multiplying ~¢ lowers its value over that  
previously calculated. Thus, a good fit between 
previous theory and experiment could only be ob- 
tained by using a low value of 2MD to compensate 
for the previous over-estimation of the parameter 
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Fig. 3. The ratio of the one-phonon velocity corrective term 
(VI = 2Vt) to the previous one-phonon results (VI = Vt), 
for the face-centered-cubic struetm'e, as a function of X. 

multiplying J .  I t  is also noteworthy that  the addi- 
tional velocity dependent correction seems to be 
decreasingly important as one passes into the region 
of X >> 1. This seems to follow from the fact that  the 
velocity corrective term does not get the opportunity 
to get very negative when the peaks are closely spaced. 
In the region X >> 1, the latter condition obtains and 
the velocity corrective term seems to hover about 
zero, The observation of the dependence of the velocity 
corrective term on the closeness of adjoining Bragg 
peaks, leads one to note that  in the case of the close 
pairs of peaks or doublets, the corrective term remains 
positive between doublet peaks. Thus, the effect of the 
velocity corrective term is to increase TDS between 
Bragg doublets so that  the TDS background in the 
region between peaks is actually much higher than the 
average TDS background in the exterior region. This 
is an important fact in trying to correct for the peaking 
up of TDS under the Bragg peak. It  might be recalled 
that  in practice TDS is important because it peaks 

at the same point in reciprocal space as Bragg peaks 
occur. Thus, in measuring integrated intensities above 
a straight-line connecting points of the background, 
TDS is erroneously included in the integrated Bragg 
intensities. A complete discussion of this is given by 
Chipman & Paskin and one need here only note the 
additional contribution caused by the velocity correc- 
tive terms. Examining Fig. 3 it is apparent that  the 
major effect of the velocity corrective terms is to cause 
sharper pealdng of TDS and hence a greater contribu- 
tion of TDS to the apparent measured integrated 
intensities. I t  is difficult to make a general quantitative 
estimate about the increased contribution of TDS to 
the measured integrated intensities over that  pre- 
viously calculated. The increase depends on the par- 
ticular peak as well as the separation between peaks. 
We have however found the increase to range between 
about 10-30 % for average peaks over that  of previous 
estimates. This can be seen from Fig. 3 if one thinks 
of the valleys between peaks as malting up the base 
lines and looks at the additional TDS contribution to 
the Bragg peak as the additional velocity dependent 
TDS contribution lying above this base line. 

Chipman & Paskin have also noticed that  there is 
an anomalous diffuse scattering in powders in the 
region X ~ 1 (below the (111) peak). The additional 
velocity corrective term seems to decrease the TDS in 
this region and thus to increase the magnitude of the 
anomalous extra scattering. 

T w o - p h o n o n  c a l c u l a t i o n  ( t h e o r y )  

The previous two-phonon TDS calculation for powders 
was made with Vz = V~ and assumed no dispersion. 
A simplifying assumption was made in the inter- 
mediate stage of calculation to obtain a simple closed 
form for /TD2 and in turn led to a closed form for 
the appropriate powder average of the intensity/TD2. 
Walker (1956) in his calculation of ITD 2 (directed 
toward single-crystal work) did not restrict himself to 
the case V~ = Vt and in addition assumed a dispersion 
form appropriate to a one-dimensional linear chain. 
Fortuitously, it was found that the author's work and 
Walker's formula (with Vz set equal to Vt) closely 
approximate one-another. Thus, although it was im- 
practical to extend the author's previous calculation 
(1958) to the case Vz 4 Vt, an approximate c]osed- 
form solution to IwD2(gl  =~ Vt) could be obtained 
by combining the author's previous results with those 
of Walker (1956). As the effect of taking the powder 
average for the one- and two-phonon processes 
minimizes the importance of the contributions from 
the edges of the Brillouin zones, we have where ever 
possible chosen cruder approximations than would be 
possible in single-crystal work for the sake of a closed- 
form solution. Thus, the combination-closed-form 
chosen for ITD2 is only approximate as Vz >> Vt but 
does have the property of yielding the previous solu- 
tion of the author (1958) as Vz -+ Vt and does contain 
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the  essential  behavior  of ITD2 as  a funct ion of V~ 
and  Vt. Wi th  this qualification, the equat ion chosen 
for ITD2 w a s  

J M v X ~ k ~  (A +B sin s ~+C sin 4 a) 
ITm = 9 ~ ( 1  +2k/3) ~ 

where 
A = k -2+k-X+0.25 ,  
B = (k-t+0.5)/2, 
C = 3/32,  

and  

(12) 

t +k = v ~ / v ~ .  

In  going from Walker ' s  equat ion for ITm to (12), 
we have  made  use of the  following s implifying ap- 
proximat ions:  ~'a + 3'2 = 1 , 2 7 3 -  2~, 4 -  73 = 0, 74 = 0.25 
and  ~Eo/4  = Xm/(~ (see Walker  (1956) for the defini- 
t ions of the  above terms). Taking the appropriate  
powder average as given by  (3), we arrive at  the fol- 
lowing equat ion for (ITm) 

(ITD 2) = ~ ' M / )  { [(1 +-2k/3)~] (A~a+ BeB+ COe )}, (13) 
% 

where 

e,~ = (:r3x~x-~/18) 2, X;~A~,[Xm-lX-Xhk,I]  , 
hkl 

3 4 Xm ~ 31,kz e~ 5--4~ ~ Z22~, {[3(x~ +xh') -x~]xm 

- [ 3 ( X  9' + X]ta)- ( X -  x .~,)=]lX-  Xh~l} 

r~ aX~ [ / X  2 + X  9 X 2\2~ 
1 ~  hkZ"~'Jhk~Xhkz L1 -- \( ~ ~ - -  "~] j 

and 
/X  ~ + X  ~. X ~ . \ ~  ~aX~ . a ( h,~, - ~ /  

q~ = - - - 5 4 X  ~ 3 ~ X ~  1 -  \ ~ / j 

2=aX~ 2 j,,~,Xa~,( X , , -  I X -  x ~ , l )  
2 7 x  ~ ~ 

x 
~ L\  2XXn~ / 

/X  ~ + X  ~ X e~a~ 
- /  ~ - ~1 / 

\ ~-X-X-~ / J 
y~3X5 

m ~, ~ [8(X~+X~3~+4(X~+X~) + ~ ~ X-~ 

~. ~ ~ ~X ~ + X  ~ X ~. ~ x (X~t+X - X ~ )  + 3 ~ ~ - , ,  , 

~ X &  . x j ~  I X -  X ~ l  
[8(x~+xh~) ~ 

270X ~ ~,t X ~ ,  

+ 8XX~,~ (X ~ + X ~ )  + 12X~'X~] . 

In  Fig. 4, ~ ,  e~ and ~v oY (13) are plot ted as a 
funct ion of X. Unfor tunate ly ,  there is no simple way 
of representing the general  two-phonon results in such 
a way  as to contain the Vz = Vt result  plus a correc- 
t ive t e r m - - a s  was the case in the general one-phonon 
case. This is a consequence of the general two-phonon 
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Fig. 4. QA, ~B and  ~C, the  two-phonon  contr ibut ions,  for the  
face-centered-cubic s t ructure ,  as a funct ion  of X.  

formulat ion having  a velocity dependent  factor mul- 
t ip lying each reciprocal space-dependent  parameter ,  
and  these velocity dependent  parameters  do not  hap- 
pen to be s imply  related to the V~ = Vt parameter .  
We therefore have  resorted to calculating the  two- 
phonon TDS for the V~ = Vt case and  the  V~ = 2Vt 
and  direct ly comparing the ratios. For  V~ = Vt, 
k = 0, and  the braced te rm becomes Qa which of 
course is identical  to the previous result  (Paskin, 1958) 
and  in terms of the previous nota t ion we denote this  
parameter  as C 2. For Vt = 2 Vt, k = 3, and  we denote 
the braced term as C~. C~/C 2 is given in Fig. 5. This ratio 
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Fig. 5. The ratio of the  two-phonon contr ibut ions  for V l  = 2 V t  
to t ha t  for V~ = Vt ,  for the  face-centered-cubic s t ructure ,  
as a funct ion of X.  

is the ratio of the two-phonon TDS with V, -- 2 Vt to 
tha t  with Vz = Vt and  thus enables a semi-quant i ta-  
t ive examinat ion  of the velocity effects on the previous 
two-phonon TDS calculation (Paskin, 1958). 

T w o - p h o n o n  T D S  calculat ion (discuss ion)  

The impor tan t  results of the present  two-phonon 
calculation can be seen from Fig. 5 to be quite anal- 
ogous to those of the one-phonon calculation: There 
is more pronounced peaking in the v ic in i ty  of the  
Bragg peaks and  a general lowering of the TDS back- 
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ground in the region between Bragg peaks. Again the 
region between doublets is also higher than the general 
background. As in the case of the one-phonon calcula- 
tion, the major effect relative to correcting for the 
TDS contribution to measured integrated intensities, 
is to increase the contribution. In the previous work 
of Chipman & Paskin, the two-phonon contribution to 
the apparent integrated intensity was neglected in 
arriving at a TDS correction in analytic form. I t  is 
apparent that  in fact there is likely some contribution 
from the two-phonon TDS as well as the one-phonon. 
To the degree that  the peaking of the two-phonon 
contribution becomes important, the approximate 
analytic expression given by Chipman & Paskin 
becomes in error and their graphical method must be 
utilized with the velocity term corrections as given 

by this paper. However, in general for materials such 
as copper with usual Debye characteristic tempera- 
tures, the analytic formula will prove sufficient over 
the usual region of reciprocal space. 

I am pleased to acknowledge many valuable discus- 
sions with Dr D. R. Chipman pertaining to the problem 
of TDS in cubic powders. 
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The Crystal Structure of Orthorhombic Hexatriacontane Ca6H~4 
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Single crystals of the orthorhombie form of hexatriacontane C3sH~4 have been shown to have space 
group Pca21 with unit-cell dimensions a ---- 7.42, b ---- 4.96, c ---- 95.14 /~. The crystal structure has 
been determined from Fourier syntheses of the electron density projected down the three principal 
crystallographic axes and from observations of the agreement between observed and calculated 
structure factors. The molecular chains are regular and periodic within experimental error, with a 
C-C bond length of 1.533 A and a zigzag bond angle of 112 °. The side-by-side packing of chains is 
identical with that found in the monoclinie form and in polythene. Intermolecular distances are 
given and discussed briefly in relation to the polymorphism, the stability and the anisotropic thermal 
vibrations and expansion coefficients of long chain hydrocarbons. 

Introduction 

The structure of the monoclinic form of hexa- 
triacontane has recently been described by Shearer & 
Vand (1956). The investigation described here was 
in progress at the same time as the work of these 
authors, and the results are now presented as a con- 
tribution to the study of long-chain hydrocarbons and 
their polymorphi~m. The crystals examined in this 
investigation were part of the original batch of 
material used by Vand (1953) and Shearer & Vand 
(1956), and were originally prepared by Dr McGowan 
of I.C.I. (Alkali) Ltd., by a Wurtz synthesis from 
octa-decyl iodide C~ aH3~I. When the original material 
was recrystallized from high-boiling petroleum only 
small, poor-quality crystals were obtained. Crystals 
satisfactory for X-ray intensity measurements were 

* Present address: Aluminiam Laboratories Ltd, Banbury, 
Oxen, England. 

finally grown by dissolving the recrystallized material 
in hot petroleum ether and cooling slowly over a period 
of a few days in a large water-filled Dewar vessel. 
Orthorhombic plate-like crystals were obtained with 
inter-edge angles of 67 ° 30'. The large plane surfaces 
are (001) faces and the edge surfaces are (110) and 
(110) faces. In subsequent experiments it was found 
that  monoclinic crystals were obtained by cry~ta, lliza- 
tion from benzene and that  the orthorhombic form 
was usually obtained from petroleum ether. These 
observations will be discussed later in the light of 
Smith's (1953) and Vand & Shearer's work, but at 
the time we chose to examine the crystal structure 
of the orthorhombic form because of its closer analogy 
to the crystal structure of polythene described by 
Bunn (1939). The crystallographic data for this form 
has already been used in the derivation of bond 
polarizabilities (Bunn & Daubeny, 1954). 


